

Year 12 Mathematics Specialist Units 3, 4 Test 1 2020

Section 1 Calculator Free Complex Numbers and Functions

STUDENT'S NAME

DATE: Wednesday 4 March

TIME: 28 minutes

MARKS: 29

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

(a) Express
$$5 \operatorname{cis} \frac{5\pi}{6}$$
 in the form $z = a + bi$ [3]

(b) Express
$$\frac{\overline{2-i}}{(1+i)^2}$$
 in the form $z = a + bi$

[3]

2. (5 marks)

Solve $z^4 + 8i = 0$. Answers may be given in polar form.

3. (7 marks)

Consider the expression $z^4 + 3z^3 - 3z^2 + 3z - 4$


(a) Show that z-i is a factor of the above expression. [2]

- (b) State another factor for the above expression.
- (c) Hence, or otherwise, solve $z^4 + 3z^3 3z^2 + 3z 4 = 0$ [4]

[1]

4. (5 marks)

Sketch the function $f(x) = \frac{3x - x^2}{x - 2}$, showing all intercepts, poles and asymptotes. It is not necessary to identify any stationary points.

5. (6 marks)

Given
$$f(x) = \frac{3}{x^2 - 3}$$
 and $g(x) = \sqrt{x^2 - 1}$

(a) By considering the restricted domain $\{x : x \in \mathbb{R}, x \ge 0, x \ne \sqrt{3}\}$, determine $f^{-1}(x)$ and state the restricted range of $f^{-1}(x)$. [3]

(b) Determine an expression for $f \circ g(x)$ and state the domain of $f \circ g(x)$. [3]

Year 12 Mathematics Specialist Units 3, 4 Test 1 2020

Section 2 Calculator Assumed Complex Numbers and Functions

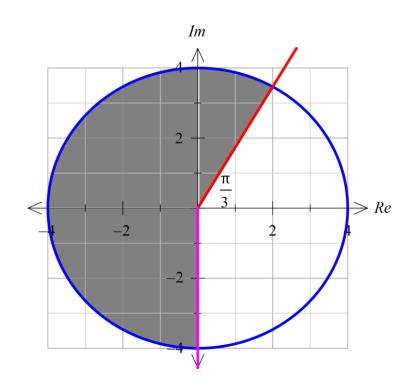
STUDENT'S NAME

DATE: Wednesday 4 March

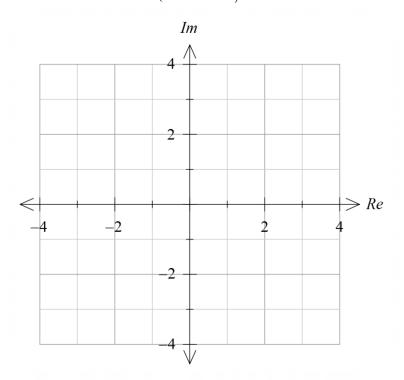
TIME: 22 minutes

MARKS: 22

INSTRUCTIONS:

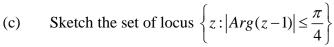

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

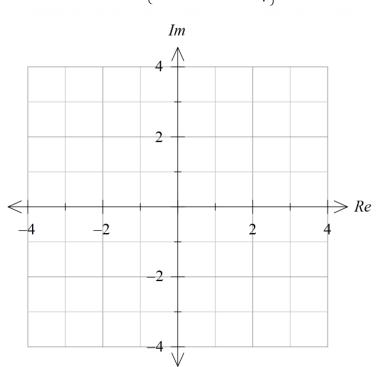
Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

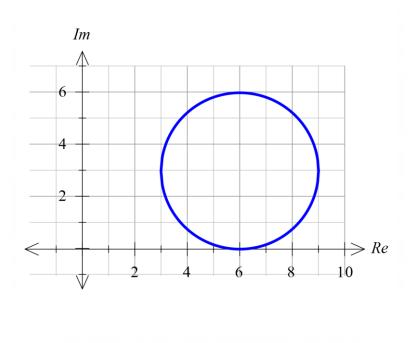

This page has been left blank intentionally

6. (11 marks)

(a) Describe fully the shaded region below

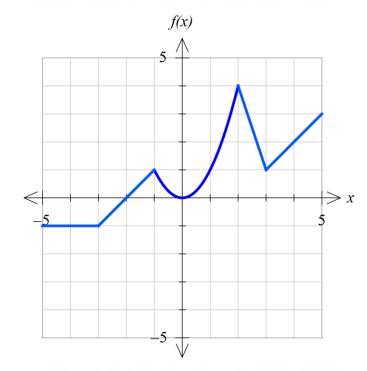



(b) Sketch the set of locus
$$\{z: z + \overline{z} = 4\}$$

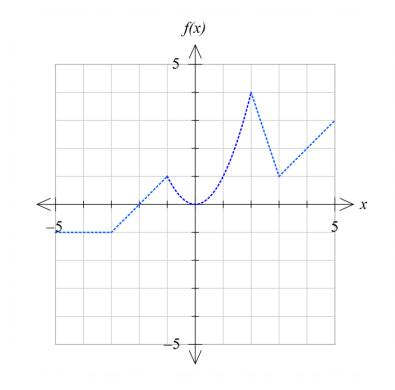

[3]

[3]

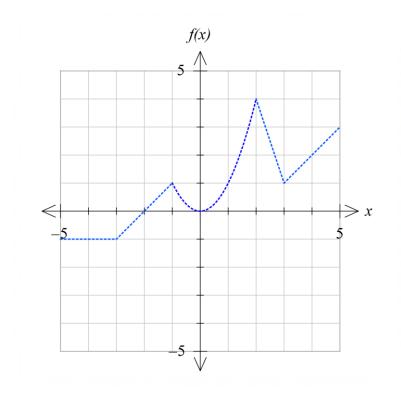
(d) The sketch of the locus of a complex number $\{z: |z-6-3i|=3\}$ is given below:


Determine the maximum value for |z| as an exact value.

[2]

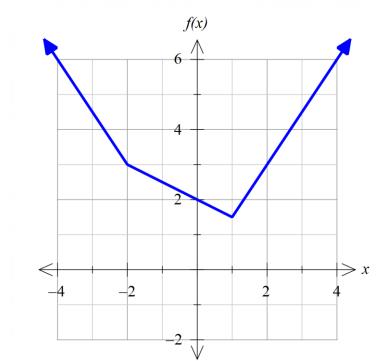

[3]

7. (6 marks)


Consider the following function

(a) Sketch
$$\frac{1}{f(x)}$$

[2]



(d) Hence, or otherwise, solve f(x)|f(|x|)| = 1 for $x \ge 0$

[2]

8. (5 marks)

The graph of $f(x) = |x-1| + |\frac{x}{2} + 1|$ is given below:

The solution to the equation $a|x+b|+c = |x-1|+ |\frac{x}{2}+1|$ is $\{x: -1 \le x \le 1\}$.

(a) Sketch a possible graph of g(x) = a |x+b| + c on the axes above. [2]

(b) Determine the values of the real constants a, b and c. [3]